

Real time implementation in a multiplatform of a monitoring systems for the driver's sleepiness and distraction using artificial intelligence.

> ENG. Flores Monroy Jonathan mauricio Dr. Mariko Nakano Dr. Héctor Pérez DR. Enrique Escamilla

Itinerary

Justification

Approximately 23.5% of the car crushes in the United State are related to fatigue of the drivers.

3

In Mexico, 16,500 persons a year are killed in traffic accidents and its economic burden becomes approximately 150 billion Mexican pesos. by In Mexico, 16,500 persons a year are killed in traffic accidents and its economic burden becomes approximately 150 billion Mexican pesos

10-0 +

odel: Proposed_model_| atention detection: : No pay Attention normal ion: Not paying attention width: 864 pixeles height: 1920 pixeles

Proposed system

87%

General characteristics

Figure 1. Proposed driver's drowsiness and distraction detection system

Detection of the region to analyze

V&J algorithm

MediaPipe face algorithm

Implementation of a shallow CNN

Layer name	Size of feature msp	Number of parameters	
Conv2D	62 × 62 × 32	896	
BatchNormalization	62 × 62 × 32	128	
MaxPooling2D	31 × 31 × 32	0	
Conv2D	29 × 29 × 32	9248	
BatchNormalization	29 × 29 × 32	128	
MaxPooling2D	14 × 14 × 32	0	
Conv2D	12 × 12 × 64	18496	
BatchNormalization	12 × 12 × 64	256	
MaxPooling2D	6 × 6 × 16	0	
Flatten	2304	0	
Dropout	2304	0	
FC	128	295040	
Dropout	128	0	
FC	128	16512	
FC	3	387	
Total parameters: 341,0 Trainable Parameters: 3 Non-trainable paramet	091 340,835 ers: 256		

Classification of 3 states of the driver.

Analysis of consecutive results

Activation of relevant alarm

Alarm triggered by "distraction"

Video – X

Alarm triggered by "sleeping"

Figure 2. Proposed algorithm for the detection of drowsiness and distraction a) Facial recognition process and its various actions when the region to be studied is detected or not b) Distraction recognition process through the proposed convolutional neural network (P-CNN) c) Sleepiness recognition process by means of a proposed convolutional neural network (P-CNN)

Results

Z

Comparative tables

Model name	Total parameters	Trainable Parameters	Non trainable ponrameters	Best accuracy	Size od the model	Input image size
Proposed model	341,091	340,835	256	0.9577	3.98 MB	64x64
Mobilenet V2 Fine-Tuning 18	2,590,083	2,549,011	41,072	0.9675	10.30 MB	64x64
VGG16 Fine-Tuning 7	14,850,179	14,590,019	260,160	0.9777	56.8 MB	64x64
Resnet 50 Fine-Tuning 7	24,116,419	24,053,699	62,720	0. 9760	92.5 MB	64x64
Inceptionv3 Fine-Tuning 229	21,938,275	12,947,395	8,990,880	0.96	84.5 MB	75x75
Xception Fine-Tuning 26	21,390,187	21,144,843	245,344	0.97125	81.9 MB	64x64

Table 2: Comparative table of the best retrained models according to their best accuracy.

Device	Facial recognition speed using V&J algorithm (fps)	Facial recognition speed using MediaPipe face algorithm (fps)	Resolution of the input image (pixels x pixels x channels)
D1	20	21	640 x 480 x 3
D2	15	17	640 x 480 x 3
D3	6	8	640 x 480 x 3
D4	21	-	600 x 800 x 3
D5	14	-	864 x 1920 x 3

Table 7: Table of performance tests on the various devices using the proposed P-CNN

Dataset used and Confusion matrices

Figure 3: Dataset used NTHU-DDD

Fig. 4. Confusion matrices in four different conditions. (a) without glasses under normal illumination, (b) with glasses under normal illumination, (c) without glasses under IR illumination and (d) with glasses under IR illumination.

Performance tests on PC - Workstation

PC AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz, 32GB RAM, 64-bit, 3070TI GPU, 8GB Memory, 6144 cores, 1.770MHz.

Huawei D16 LAPTOP, AMD Ryzen 5 4600H, GPU Radeon Graphics 3.00GHz, 16.0GB RAM, 64bits.

Performance tests on mobile devices

Samsung S20 fe

Graphic sample of the implementation of the proposed system in real conditions.

Conclusions

SOFTWARE IMPLEMENTATION ON DEDICATED DEVICES

SOFTWARE IMPLEMENTATION ON MOBILE DEVICE

17

SOFTWARE IMPLEMENTATION ON WORKSTATION

Thanks for your attention